Variable Selection for Linear Transformation Models via Penalized Marginal Likelihood
نویسندگان
چکیده
We study the problem of variable selection for linear transformation models, a class of general semiparametric models for censored survival data. The penalized marginal likelihood methods with shrinkage-type penalties are proposed to automate variable selection in linear transformation models; we consider the LASSO penalty and propose a new penalty called the adaptive-LASSO (ALASSO). Unlike the LASSO, the ALASSO imposes different penalties on different coefficients: unimportant covariates receive larger penalties than important ones. In this way, important variables can be protectively preserved in models while unimportant ones are more likely to be shrunk to zeros. An efficient iterative algorithm is proposed for optimization. The performance of both penalties is illustrated through simulated examples and one real data, the Veteran’s Administration lung cancer data. In terms of both variable selection and coefficient estimation, we find that both shrinkage estimators outperform the maximum marginal likelihood estimator, and the ALASSO gives better performance than the LASSO.
منابع مشابه
Penalized Bregman Divergence Estimation via Coordinate Descent
Variable selection via penalized estimation is appealing for dimension reduction. For penalized linear regression, Efron, et al. (2004) introduced the LARS algorithm. Recently, the coordinate descent (CD) algorithm was developed by Friedman, et al. (2007) for penalized linear regression and penalized logistic regression and was shown to gain computational superiority. This paper explores...
متن کاملVariable Selection via Penalized Likelihood
Variable selection is vital to statistical data analyses. Many of procedures in use are ad hoc stepwise selection procedures, which are computationally expensive and ignore stochastic errors in the variable selection process of previous steps. An automatic and simultaneous variable selection procedure can be obtained by using a penalized likelihood method. In traditional linear models, the best...
متن کاملVariable Selection for Cox’s Proportional Hazards Model and Frailty Model By
A class of variable selection procedures for parametric models via nonconcave penalized likelihood was proposed in Fan and Li (2001a). It has been shown there that the resulting procedures perform as well as if the subset of significant variables were known in advance. Such a property is called an oracle property. The proposed procedures were illustrated in the context of linear regression, rob...
متن کاملAutomatic Smoothing and Variable Selection via Regularization
This thesis focuses on developing computational methods and the general theory of automatic smoothing and variable selection via regularization. Methods of regularization are a commonly used technique to get stable solution to ill-posed problems such as nonparametric regression and classification. In recent years, methods of regularization have also been successfully introduced to address a cla...
متن کاملVariable Selection for Partially Linear Varying Coefficient Transformation Models with Censored Data
In this paper, we study the problem of variable selection for varying coefficient transformation models with censored data. We fit the varying coefficient transformation models by maximizing the marginal likelihood subject to a shrinkage-type penalty, which encourages sparse solutions and hence facilitates the process of variable selection. We further provide an efficient computation algorithm ...
متن کامل